

Data Management Plan

Author(s):	EYE-TEACH Consortium
Editor(s):	Daria Pritup (University of Turku)
Responsible Organisation:	University of Turku
Version-Status:	V1
Submission date:	30/06/2025
Dissemination level:	PU – Public

© Copyright by the EYE-TEACH Consortium

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

Table of Contents

l able c	of Contents	2
Introdu	action	3
1. Da	ta Summary	4
1.1.	Purpose of data generation and re-use	4
1.2.	Data origins	6
1.3.	Data utility	6
2. FA	IR data	6
2.1.	Making data findable	6
2.2.	Making data accessible	7
2.3.	Making data interoperable	8
2.4.	Increase data re-use	9
2.4	1.1. Data quality assurance processes	9
3. Ot	her research outputs	11
4. All	ocation of resources	12
4.1.	Costs and responsibilities	12
4.2.	Long-term preservation	12
5. Da	ta security	13
5.1.	Data handling security	13
5.2.	Data storage security	15
6. Eth	nics	15
6.1.	Ethical risks	15
6.2.	Informed consent	16
7. Ot	her issues	17
7.1.	Relevant national and departmental procedures for data management	17

Introduction

Eye-tracking and AI for Enhanced Teaching (EYE-TEACH) is an EU-funded initiative aimed at transforming educational practices across Europe. By integrating AI and eye-tracking technologies into teachers' day-to-day pedagogical practices, we empower educators and give them novel tools for enhancing their students' reading comprehension. This technology offers insights into reading behaviours and comprehension levels, enabling personalised teaching strategies.

This Data Management Plan informs the research of the project across the data lifecycle, from planning to collecting, analysing, sharing and storing to potential reuse. The document explains how research data will be handled by the project's research partners and sets out clear and responsible ways of managing data that follow open science standards. In line with the FAIR principles (Findable, Accessible, Interoperable, Reusable), the aim is to make data available to others while balancing openness with the requirements of GDPR and ethical safeguards.

This is a living document, updated by M15 and M36 of the project's lifecycle.

1. Data Summary

EYE-TEACH will re-use published and unpublished eye-movement datasets to identify potential predictor variables of reading comprehension. Datasets are identified via a systematic review of published research and inquiries from researchers in the field. The datasets to be re-used should include both eye-movement variables and reading comprehension measures for a participant measured within the same reading task.

The types and formats of data generated or re-used in the project are listed in Table 1. The size of the data depends on the type of file format, the number of participants in each substudy, and the length of the testing sessions (see approximations in Table 1).

1.1. Purpose of data generation and re-use

Survey and interview data are generated to map the needs of teachers and educational organisations regarding the use of Al-assisted ET-analytics tools, the factors impacting teachers' willingness and readiness to adopt such technologies, and the current use of data in guiding educational practices. We will also explore and identify eye movement metrics that are most suitable for tracking reading comprehension processes in different task settings and educational contexts by reusing existing eye tracking datasets.

Moreover, survey and interview data are collected to co-create a pilot system with the teachers and education professionals. Validity tests of the eye movement metrics in the specific reading comprehension task will be done with eye tracking and comprehension data generated in laboratory experiments. The user interface of the pilot system will be tested in usability tests involving eye-tracking data audio/video recordings, screen recordings, and survey and interview data. Feasibility tests will be carried out to examine the potential challenges and opportunities of this type of systems in educational use, producing survey or interview data. Validity of the eye movement metrics collected with the pilot tool will be tested by collecting eye-tracking and reading comprehension data with the pilot system.

Stakeholder contact information will be gathered for communication and dissemination activities.

Table 1. Data to be collected in the EYE-TEACH project.

Work Package(s)	Type of data	File format	Software	File size	Sensitive / Confidential
					(Yes/No)
WPI, WP4	Interviews (original audio)	.mp3	Soundrecoder, Scribewave (for transcribing)	~30Mb per participant (depends on the length of the interview)	Yes
WPI, WP4	Interviews (transcripted)	.txt	Word, NVivo	~25-50Kb	No
WP1, WP2, WP3	Eye movement recordings (original files)	.edf or other, .mp4	SR Research Dataviewer, Tobii Pro Lab, iMotions,, BeGaze, Python, Experiment Center	~5Mb per participant (depends on the length of the recording)	Yes (e.g., webcam eye- tracker data, pupil recordings, video recordings)
					data)
WP1, WP2, WP3	Eye movement data (preprocessed)	.CSV	Tobii Pro Lab, iMotions, Excel, R, SR Research, Python, BeGaze, Blickshift Analytics	~100-500Mb per participant (depends on the length of the recording)	No
WPI	Survey data (original files)	.xlsx .sav .csv	Qualtrics	~1-5Mb	No
WPI	Survey data (preprocessed)	.xlsx .csv	Excel R, Blickshift Analytics	~1-5Mb	No
WP2, WP3	Comprehension data	.xlsx .csv .md .txt	Excel R, Python, Blickshift Analytics	Varies by task	No
WP3	User information (mother tongue, school level)	.xlsx	Excel, Blickshift Analytics	~1-5Mb	No

WP3	Text materials (metrics)	.xlsx	Excel	Varies by task	No
WP5, WP6	Contact information (mailing list of the EYE-TEACH ecosystem, events, board members)	.xlsx	Excel	~20-100Kb per file	Yes

1.2. Data origins

The data generated in the project originates from volunteer study participants recruited to the project: children, adults, teachers, or education professionals. Reused data originates from participants of previous studies.

1.3. Data utility

The data might be useful for researchers, educators, and technology professionals interested in developing novel tools for educational contexts.

2. FAIR data

The data generated within the project will be managed in line with the FAIR and open access principles. This means that the data will be as findable, accessible, interoperable and reusable as possible, and it will also be as open as possible, yet as closed as necessary to ensure data protection and anonymity concerns, especially for potential minor participants.

2.1. Making data findable

As a public dataset in the OSF repository (see section 2.2), the data will receive a persistent identifier through registration of a DOI with Datacite. Keywords will be provided in the metadata to optimize the possibility for discovery and re-use of the data.

OSF leverages key metadata to describe public scholarship and utilizes a metadata model that facilitates FAIRness (Findable, Accessible, Interoperable, Reusable) as well

as enabling connections across the research lifecycle. The OSF Metadata Profile¹, which uses many common metadata standards, describes the community vocabularies and persistent identifiers that the OSF uses, the relationships available between metadata fields, the metadags used to enable enhanced web discovery, and an overall map of the metadata implementation. The metadata uses the Datacite metadata schema, including title, description, authors, license, subject, language, resource type, publication date, modification date.

OSF provides an integration with Stanford University's CEDAR embeddable editor, which allows for annotating research artifacts using specialized metadata templates. CEDAR makes it possible for community creators of specialized metadata templates to create machine-readable and FAIR schemas. The embeddable editor displays CEDAR schemas within the OSF. Researchers will select the relevant specialized template on OSF which best fits their domain of research and fill out the additional metadata form. On public projects, the contents of the extra form are displayed alongside the OSF standard metadata. It is also possible to download the additional metadata as a JSON file.

2.2. Making data accessible

Repository

Anonymised data will be deposited in the Open Science Framework (OSF) repository at https://osf.io. The OSF is a free research collaboration and management platform that launched in 2012. The repository for the EYE-TEACH project can be found at https://osf.io/5pnhr/. The EYE-TEACH OSF repository is divided into subprojects for each of the project's work packages and studies. The data will be assigned an identifier through OSF. Each OSF object and file is identified internally through an OSF identifier — a combination of 5 letters and numbers unique within OSF. When combined with the root OSF URL, the identifier forms a GUID (globally unique identifier) for the object.

Data

1 OSF Metadata Profile, accessed 22 May 2025: https://help.osf.io/article/573-osf-metadata-profile

The project research data will be anonymised and made openly available through OSF. Certain datasets may need to be shared under restricted access conditions or may not be shared at all if

- a) the data contains sensitive information and/or cannot be anonymised, or
- b) opening the data would be against a partner's legitimate interests, including regarding commercial exploitation.

For data that meets one or all conditions stated above, restricted access may be granted by the Data Controller to other partners via a data sharing agreement.

Access requests to personal/sensitive data will be evaluated and approved by the Data Controller. Identity of the person accessing the personal or sensitive data is ascertained by personal passwords; the data is stored on password-protected servers and the Data Controller will provide access only to approved users.

Preprocessed research data will be made available as soon as possible. The preprocessed data are freely accessible via the Open Science Framework website.

Data that cannot be anonymised cannot be made accessible even after the project has ended. It will be destroyed. Stakeholder contact information will not be opened.

Metadata

Metadata will be made openly available and licensed under a public domain dedication CCO, as per the Grant Agreement. The preprocessed data and metadata will be preserved and remain accessible indefinitely.

The data will be stored in formats that are readily readable with open source software. Data analysis scripts will be made available with the datasets via OSF.

2.3. Making data interoperable

Standard variable names for eye tracking data will be used whenever possible. Each dataset will be accompanied with a codebook providing detailed descriptions of the variables included in the data to allow data exchange and re-use.

The data will include qualified references² to other data, such as

² A qualified reference is a cross-reference that explains its intent. For example, X is regulator of Y is a much more qualified reference than X is associated with Y, or X see also Y. The goal therefore is to

- links to persistent identifiers of other datasets produced in the project (via OSF),
- links to datasets used as input or output in a particular experiment,
- references to datasets used in related publications,
- citations and acknowledgements of other researchers' data or work.

2.4. Increase data re-use

The documentation of the published preprocessed data will be stored and released via OSF. The documentation will contain read-me files describing the contents of the datasets, codebooks, and data analysis scripts; codebooks that describe the datasets (e.g., variable definitions and units of measurement); and data analysis scripts that describe the data cleaning and analysis procedures.

The published, preprocessed data will be made freely available for re-use by third parties under the latest available version of the Creative Commons Attribution International Public Licence (CC BY) or Creative Commons Public Domain Dedication (CC 0) or a licence/dedication with equivalent rights, in line with the obligations set out in the Grant Agreement. The published data will be available on OSF also after the end of the project.

The provenance of the data will be thoroughly documented using appropriate standards and tools tailored to each data type. The EYE-TEACH project will ensure that data origin, context, and transformations are traceable, reproducible, and reusable by external parties where applicable.

2.4.1. Data quality assurance processes

Data is collected following a detailed research plan containing a protocol for data collection, including e.g. procedures for calibration of the equipment and data quality checks. All data will be processed according to the best practices established for each measurement. Please see Table 2 for more details.

Table 2. Data quality assurance processes.

create as many meaningful links as possible between (meta)data resources to enrich the contextual knowledge about the data. (Source: https://www.go-fair.org/fair-principles/i3-metadata-include-qualified-references-metadata/)

Data type	Origin / Collection method	Quality Assurance measures	Responsible partner(s)
Teacher survey data	Multilingual surveys (WP1)	Professional translation and validation by partners; pilot testing; country-level consistency checks UAntwe	
Eye-tracking data – students	Eye movement recordings in lab and classroom (WP2)	Standards for accepted calibration uVEG, Uresults; automatized or controlled data cleaning procedures; use of validated indicators	
Eye-tracking data – teachers	Collected during design evaluation and dashboard testing with teachers (WPI)	Standards for accepted calibration results; automatized or controlled data cleaning procedures; use of validated indicators	OUNL, UAntwerp
Eye-tracking EM metrics data	Curated from internal and external EM datasets (WP2, WP3)	Standard technical quality check with available information (e.g., corrupted files/misalignment errors, data completeness, calibration accuracy check, sampling rate consistency, metadata/documentation verification)	DFKI, UVEG
Al model data	Collected datasets from partners (WPI, WP2) Public datasets (WP2)	Classification: accuracy, F1-score, ROC-AUC Regression: RMSE, R^2 NLP: BLEU, ROUGE, perplexity Generation: diversity, Human-in-the-loop scoring Multi-label/ranking: NDCG, Hamming loss, MAP Explainability: SHAP, LIME Model cards Bias exploration and reporting	DFKI
Teacher focus group, interview, and questionnaire data	Collected during focus groups, interviews, and during the design and evaluation phase and feasibility trial (WPI, WP3, WP5)	Pilot testing; structured documentation,	OUNL, UAntwerp

System pilot feedback focus group data	Feedback from classroom and mock-up system evaluations (WPI, WP3, WP5)	Pilot testing, interview guideline, thick description, validated measures (quantitative) and established methods for thematic analysis (qualitative) CRS-Que Framework, TAM Framework	DFKI, OUNL
Focus groups and interview transcripts	Educators, students, ethicists (WPI, WP4)	Pilot testing, interview guideline, thick description	CNR, UAntwerp, OUNL
Ethics and legal documentation	Consent forms (WP4)	Will be described the way the consent will be collected	CNR, UAntwerp
Contact information for communication and dissemination	Voluntary sign up on website, against consent disclaimer (mailing list) Consent forms (events)	Established GDPR-compliant consent forms	AcrossLimits

3. Other research outputs

EYE-TEACH will produce several research outputs (other than data), such as

- published digital/physical materials (articles, guidelines, materials)
- digital outputs (models, software)
- non-print media (videos, images)

The FAIR data management of these research outputs is described below.

Published digital/physical materials

Published materials and guidelines will be made accessible through preprint archives (e.g., EdArXiV), self-archiving, and/or open access publishing and repositories, as well as stored on the project website.

Digital outputs

Digital outputs will be made accessible through software and source code repositories (e.g., GitHub) or other open repositories (e.g., Zenodo) and attached to DOIs.

Non-print media

Non-print media will be stored on the project website for at least 5 years after project end.

4. Allocation of resources

4.1. Costs and responsibilities

Direct and indirect costs for making data or research outputs FAIR (relating to e.g., storage, archiving, re-use, security, etc.) are covered by each partner institution responsible for collecting data, as project personnel work time will be allocated for these tasks.

The Coordinator will be responsible for overseeing data management and that the DMP is followed. Each WP or Task Leader who acts as Data Controller (possibly with other partners that act as joint controllers) is responsible for managing the data collected under their WP/Task according to the project DMP.

4.2. Long-term preservation

Published preprocessed data and its metadata will be permanently stored in OSF. The original data will be stored on a secure cloud server 5–10 years after the project, as mandated by the Grant Agreement. The 5-year retention period ensures that the European Commission can conduct necessary audits and verify project implementation. Only individual Data Controllers (WP/Task leaders) will have access to their respective data. Once it has been analysed, original data will be securely disposed of. Any contact information of research participants will be destroyed after the participants have concluded their participation. Contact information of community engagement participants will be destroyed after 5 years from project end.

Long-term storage of published data on OSF is guaranteed by the preservation fund established by the Center of Open Science. The preservation fund will ensure the accessibility of data for at least 50 years if OSF's operations were to be curtailed. As long as OSF remains operational, data storage is functionally unlimited.

Costs for sharing and preserving scholarship on OSF is based on the storage volume of contents stored. Research projects that exceed the 50 GB OSF public storage limit

or the 5 GB private storage limit will require extra capacity. If additional capacity is needed, it will be purchased by the project.

5. Data security

5.1. Data handling security

Research data will be handled according to information protection and processing instructions of the project DMP and DPIA. The original and sensitive data will not be shared between Data Controllers or Processors. Data Controllers are responsible for storing, sharing and recovering original data. Data shared with Data Processors will always be a preprocessed copy of original data. Data Processors are responsible for storing, backups and recovery of the data shared to them by Data Controllers. For more information on data security measures per partner, see Table 3.

Any participant contact information will be stored separately from the data in a crypted format on a designated data-controlling researcher's password-protected computer and backed up in the cloud file service. These files will be backed up in respective universities cloud service on a regular basis.

Table 3. Data security measures per partner (Data Controllers and Data Processors).

Partner	Data storage and backup location(s)	Data sharing	Data recovery
UTU	Individual password- protected computers with personal online network folders Individual, password- protected and internally hosted Seafile cloud storage	Access rights (UTU staff) or password-protected link (other partners) to shared, password-protected Seafile cloud storage	Daily automatic backups on personal online network folder Automatic synchronisation to Seafile cloud storage Manual backups to Seafile cloud storage
UANTWERP	OneDrive for Business Microsoft Teams or Sharepoint UAntwerp central servers	Microsoft Teams or Sharepoint (with password protected link) for shared data among WP1 team members Belnet FileSender for sharing data with other users	For recovery, we will fall back on the standard recovery methods provided by Microsoft as also described on the Pintra ICT webpage
UVEG	Individual password- protected computers with personal online network folders Individual, password- protected files on DISCO (a personal virtual storage service provided by UVEG)	Access rights (UVEG staff) or password-protected link (other partners) via Consigna (data sharing service provided by UVEG)	Daily automatic backups on personal online network folder Manual backups to DISCO virtual storage
OUNL	Individual password- protected computers with online network folders	SURF Researchdrive MS Teams / Sharepoint	Daily automatic backups on personal online network folder
DFKI	Individual password- protected computers with personal online network folders	MS Teams / Sharepoint	Backups will be set up
AcrossLimits	GoogleDrive for Business	Internal folder accessible only to AcrossLimits team members or invited users	Standard recovery methods provided by Google

5.2. Data storage security

Long-term storage of published data on OSF is guaranteed by the preservation fund established by the Center of Open Science. The preservation fund will ensure the accessibility of data for at least 50 years if OSF's operations were to be curtailed. As long as OSF remains operational, data storage is functionally unlimited.

Safe storage on OSF is ensured by project privacy settings, password security and two-factor authentication, European storage location, GDPR compliance, backup preservation, and encryption of data transfer.³

6. Ethics

6.1. Ethical risks

The ethical and legal issues impacting data sharing in EYE-TEACH have been described in-depth in the Description of the Action (DoA)⁴:

The first identified legal and ethical risk of EYE-TEACH relates to the processing of personal and biometric (sensitive) or biometric- based eye-tracking data, especially when collected from children. Whether eye-tracking data is biometric or only biometric-based depends on the system used for collecting the data. Some eye-trackers store the video image of the eye, in which case the data is biometric. Some systems parse the recorded video image online and store only some parameters, specifically, pupil size and pupil coordinates at each video sample. Online parsed data can be considered as biometric-based data. Biometrics collection is allowed under Art9.2 and Art89 of GDPR, but requires explicit consent.

The second identified risk is obtaining informed consent from participants regarding their interaction with Al systems. Due to the combination of a relatively unknown biometric-based measurement to the general public (eye movements) and artificial intelligence, the project must ensure that the information provided to participants is

³ OSF Security and Privacy, accessed 22 May 2025: https://help.osf.io/article/391-security-and-privacy; OSF Account and Security FAQ, accessed 22 May 2025: https://help.osf.io/article/547-account-and-security-faq-s

⁴ EYE-TEACH Grant Agreement, Description of the Action, chapter 4. Ethics self-assessment (p. 38-45).

understandable enough for them to give informed consent. Special consideration needs to be given to child participants, not only as research subjects but also as endusers of the developed Al pilot system. This requires gathering informed consent from parents/guardians during research activities and providing training for teachers and education professionals in the ethics of such systems as well as the processes of gathering informed consent.

Thirdly, the profiling of the AI system also presents ethical and legal risks. AI algorithms will build profiles based on ET data, and classify and make decisions on student performance. Automated profiling is not prohibited under Recital 71, but the subject has the right not to be subject to a decision based solely on automated processing, including profiling. Again, as with personal and sensitive data, the participants must be informed of the existence of automated profiling/decision—making, the meaningful information behind the processing of data, and the impact or consequences of profiling.

Biometric data, profiling and automated decision-making all attract special consideration according to GDPR, especially for children as data subjects. This will be reflected in the level of scrutiny and security that will be applied when securing our data. WP2, WP3 and WP4 will select existing datasets for training the Al prototype, evaluating both scientific and ethical and privacy aspects.

Each Data Controller will apply for ethical approval and ask for ethical guidance from their respective partner institution. Each Data Controller will additionally complete a privacy register for the processing of personal data.

6.2. Informed consent

Informed consent for data sharing and long-term preservation (up to 10 years) will be included in questionnaires dealing with personal data.

7. Other issues

7.1. Relevant national and departmental procedures for data management

Data Controllers will make use of the following national or departmental procedures for data management (see Table 4).

Table 4. List of relevant national and departmental procedures for data management.

Partner	Procedures
DFKI	Federal Data Protection Act (BDSG)
(Germany)	
	UNL Code of Conduct
	Open Science and OU policy
OUNL (Netherlands)	Wet Algemene Verordening Gegevensbescherming (AVG)
(Netherlands)	VSNU code
	Wet op hoger onderwijs en wetenschappelijk onderzoek (WHW)
UA	Guidelines: Data Management Plan (Department Research Affairs & Innovation, UAntwerpen)
(Belgium)	Recommendations formulated by the European Data Protection Supervisor
	Recommendations formulated by the Belgian Data Protection Authority
UTU	University of Turku Library: Lifecycle planning for research data
(Finland)	Digital preservation services offered by the Ministry of Education and Culture in Finland: Fairdata.fi
	Guidelines provided by the Data Protection Office of the University of Valencia
UVEG	More information and external guidelines on data protection
(Spain)	Regulations provided by the Spanish Ministry of Education, Vocational Training, and Sports